Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Viruses ; 14(8)2022 07 28.
Article in English | MEDLINE | ID: covidwho-2043971

ABSTRACT

Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Uveal Neoplasms , Heparan Sulfate Proteoglycans , Heparitin Sulfate , Humans , Papillomaviridae , Tropism
3.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article in English | MEDLINE | ID: covidwho-1964001

ABSTRACT

Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2's spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Tissue Distribution , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Heparan Sulfate Proteoglycans/metabolism , Humans , Mammals/metabolism , Mice , SARS-CoV-2/metabolism , Syndecans/metabolism , Tissue Distribution/physiology
4.
Cells ; 11(5)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1715132

ABSTRACT

Severe acute respiratory syndrome virus 2 (SARS-CoV2) has infected an estimated 400 million people world-wide, causing approximately 6 million deaths from severe coronavirus disease 2019 (COVID-19). The SARS-CoV2 Spike protein plays a critical role in viral attachment and entry into host cells. The recent emergence of highly transmissible variants of SARS-CoV2 has been linked to mutations in Spike. This review provides an overview of the structure and function of Spike and describes the factors that impact Spike's ability to mediate viral infection as well as the potential limits to how good (or bad) Spike protein can become. Proposed here is a framework that considers the processes of Spike-mediated SARS-CoV2 attachment, dissociation, and cell entry where the role of Spike, from the standpoint of the virus, is to maximize cell entry with each viral-cell collision. Key parameters are identified that will be needed to develop models to identify mechanisms that new Spike variants might exploit to enhance viral transmission. In particular, the importance of considering secondary co-receptors for Spike, such as heparan sulfate proteoglycans is discussed. Accurate models of Spike-cell interactions could contribute to the development of new therapies in advance of the emergence of new highly transmissible SARS-CoV2 variants.


Subject(s)
COVID-19 , Pandemics , Humans , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
5.
Adv Exp Med Biol ; 1352: 1-13, 2021.
Article in English | MEDLINE | ID: covidwho-1669693

ABSTRACT

INTRODUCTION: A recent rapid outbreak of infection around the globe has been caused by a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first identified in December 2019 in Wuhan city of Hubei province, People's Republic of China. METHODS: We reviewed the currently available literature on coronaviruses. RESULTS: Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. Although 13 variation sites in open reading frames have been identified among SARS-CoV-2 strains, no mutation has been observed so far in envelop protein. The origin and structural biology of SARS-CoV-2 in details are discussed. CONCLUSIONS: Origin and structural biology will help the researchers identify the virus's mechanism in the host and drug design. Currently, no clinical treatments or prevention strategies are available for any human coronavirus.


Subject(s)
COVID-19 , SARS-CoV-2 , Biology , China , Humans , Spike Glycoprotein, Coronavirus
6.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1623730

ABSTRACT

Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta's spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike's molecular interactions with syndecan-4 also involve syndecan-4's cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta's cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant's spread.


Subject(s)
COVID-19/transmission , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Syndecan-4/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparan Sulfate Proteoglycans/metabolism , Humans , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Syndecan-4/genetics , Virus Internalization
7.
EMBO J ; 40(20): e106765, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1436404

ABSTRACT

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


Subject(s)
COVID-19/transmission , Heparan Sulfate Proteoglycans/metabolism , Heparin, Low-Molecular-Weight/pharmacology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Chlorocebus aethiops , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Mucous Membrane/cytology , Mucous Membrane/virology , SARS-CoV-2/metabolism , Syndecan-1/metabolism , Syndecan-4/metabolism , Vero Cells , COVID-19 Drug Treatment
8.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1273463

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.


Subject(s)
COVID-19/pathology , Heparan Sulfate Proteoglycans/metabolism , SARS-CoV-2/metabolism , COVID-19/virology , Heparan Sulfate Proteoglycans/chemistry , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sulfotransferases/metabolism , Virus Diseases/drug therapy , Virus Diseases/pathology , Virus Diseases/virology , Virus Internalization/drug effects , COVID-19 Drug Treatment
9.
Life Sci ; 276: 119376, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157590

ABSTRACT

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Subject(s)
COVID-19/blood , COVID-19/pathology , Glycocalyx/pathology , Heparin/pharmacology , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19 Testing , Case-Control Studies , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Female , Glycocalyx/metabolism , Glycocalyx/virology , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/blood , Interleukin-6/blood , Male , Middle Aged , Oxidation-Reduction , SARS-CoV-2 , Thrombosis/metabolism
10.
J Pers Med ; 10(4)2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-904671

ABSTRACT

Viral entry mechanisms for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an important aspect of virulence. Proposed mechanisms involve host cell membrane-bound angiotensin-converting enzyme 2 (ACE2), type II transmembrane serine proteases (TTSPs), such as transmembrane serine protease isoform 2 (TMPRSS2), lysosomal endopeptidase Cathepsin L (CTSL), subtilisin-like proprotein peptidase furin (FURIN), and even potentially membrane bound heparan sulfate proteoglycans. The distribution and expression of many of these genes across cell types representing multiple organ systems in healthy individuals has recently been demonstrated. However, comorbidities such as diabetes and cardiovascular disease are highly prevalent in patients with Coronavirus Disease 2019 (COVID-19) and are associated with worse outcomes. Whether these conditions contribute directly to SARS-CoV-2 virulence remains unclear. Here, we show that the expression levels of ACE2, TMPRSS2 and other viral entry-related genes, as well as potential downstream effector genes such as bradykinin receptors, are modulated in the target organs of select disease states. In tissues, such as the heart, which normally express ACE2 but minimal TMPRSS2, we found that TMPRSS2 as well as other TTSPs are elevated in individuals with comorbidities compared to healthy individuals. Additionally, we found the increased expression of viral entry-related genes in the settings of hypertension, cancer, or smoking across target organ systems. Our results demonstrate that common comorbidities may contribute directly to SARS-CoV-2 virulence and we suggest new therapeutic targets to improve outcomes in vulnerable patient populations.

SELECTION OF CITATIONS
SEARCH DETAIL